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Vertical GaN devices



Back to pn junctions

metallurgical junction
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Distinct regions:
Around metallurgical junction:
space charge region (SCR)

Far from junction:
guasi-neutral regions (QNR)

p~0

Electric field is constant and equal to zero
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Ideal p-n junction out of equilibrium E P:: L

Peak electric field:
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How to make a power device? 4



Power diodes

Goal:

=PrFL

Conduct several kilo amps of current in the forward direction with very little power loss while blocking several kilo

volts in the reverse direction.

Large blocking voltage requires wide depletion layer in order to restrict the maximum electric field strength below the
breakdown voltage (impact ionization level).

Space charge density in the depletion layer should also be low in order to yield a wide depletion layer for a given

maximum electric field strength.

This is satisfied in a lightly doped p-n junction diode of sufficient width to accommodate the required depletion layer.
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Figure of merit: how to compare different semiconductors
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Ideal Specific On-Resistance (Roy,sp):
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Figure of merit: how to compare different semiconductors E PI: L
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Power diodes

diode PIN

Forward polarization
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Forward polarization:

arrier injection

* Injection of minority carriers in the drift layer: conductivity modulation
e Charges are accumulated in the region «i»:

e Resistance is reduced

e But slows down the device

* Minority carrier device
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Power diodes

Turn-off transient
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Problem of PiN diodes
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Remove stored charge in n~ région
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i (5) Diode is reverse-biased.
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PiN diode is very slow! Not good for power converters!

However it is a great device structure to investigate the physics of materials
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GaN Power PiN diodes =P-L

PIN diodes on bulk GaN

Pro:
Bulk GaN eliminates lattice mismatch and allows growth of much thicker drift layers

Cons:

* Dislocation densities of 10%-10% cm2, still much higher than those of Si and SiC substrates

* Small size (2-3 inch size) and relatively high cost (100 euro/cm2) of the GaN substrates,
compared to 4—6 inch wafer size and reasonable cost (<10 $/cm?) of SiC



GaN Power PiN diodes

PIN diodes on bulk GaN (30 um drift layer)

Anode

* Drift region:
* Np= 5x10%» cm-3
» drift layer thicknesses are > 30um.
* Specific on-resistance of 2.95 mohm -cm?2

* Breakdown voltages of 3.7 kV
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GaN Power PiN diodes

Field plates

High E at Schottky interface
High reverse leakage current
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GaN Power PiN diodes
PIN diodes on bulk GaN (10 um drift layer)
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MOSFETs



Lateral MOSFETs

Source (S)

Oxide (Si0,)

Gate (G)

/
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How to make vertical MOSFET?
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Power MOSFETSs

Case of Silicon

Forward polarization: V> 0

W w _____ ==
il

T drain current

There are no minority carriers to cause conductivity modulation:

MOSFETs are majority carrier devices
*  Breakdown voltage is increased
*  On-resistance dominated by resistance of n"region
(drift region)

Fundamentals of Power Electronics, Robert W. Erickson, Dragan Maksimovic¢
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Reverse polarization: Vg < 0
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Reverse polarization:
p-n and p-n reverse-biased:
voltage drops across n” region
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GaN vertical transistors

Trenched MOSFETs (6 pm-thick n—-GaN)
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Key challenges:
Large on-resistance
Poor breakdown voltage
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GaN vertical transistors =PrL

Trenched MOSFETs (13 um-thick n-GaN) 1.E-06
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GaN vertical transistors

Vertical devices: CAVETs
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UCSB: I. B. Yaacov, etal., “AlGaN/GaN current aperture vertical electron transistors with regrown channels,” J. Appl. Phys., vol. 95, no. 4, pp.2073-2078, Jan. 2004

UCSB: S. Chowdhury et al., “CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion,” IEEE Electron Device Lett., vol. 33,
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GaN vertical transistors =PrL

Vertical devices: Unipolar device

Work function difference between the gate metal and GaN depletes all electrons: enables normally-off operation.
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Vertical GaN devices on Silicon substrate

There has been a significant progress on GaN vertical devices on bulk GaN substrates:

CAVET Fin MOSFET Trench MOSFET

source

! | n GaN | !
channel .
ide

n GaN drift region

drain

UCSB, Avogy, Toyoda, UC Davis MIT UCSB, Toyoda, ROHM

Our approach: Vertical GaN-on-Silicon devices
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GaN Power PiN diodes

GaN PIN diodes on Silicon substrates (< 3um drift layer)
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First Challenge: growth of thick GaN on Si =P-L

6.5 um-thick GaN grown on 6”-silicon substrate

o B e Optimized n-GaN-on-Si |
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* FWHM of 235 arcsec and 307 arcsec in (002) and (102) directions Epi structure by Dr. Kai Cheng,

Enkris semiconductors

* Estimated TDD of 2.95 x 108 cm™

* Excellent mobility of 720 cm?/Vs in UID-GaN

R. A. Khadar, C. Liu, L. Zhang, P. Xiang, K. Cheng, and E. Matioli, IEEE Electron Device Lett., vol. 39, no. 3, pp. 401-404, 2018
elison.matioli@epfl.ch 24



Quasi-vertical GaN-on-Si power devices
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Excellent performance with a BFOM of 2.0 GW/cm?

R. A. Khadar, C. Liu, L. Zhang, P. Xiang, K. Cheng and E. Matioli, IEEE Electron Device Letters, Feb. 2018.



Quasi-vertical power devices =P-L
How about vertical GaN power transistors on cost-effective Silicon substrates:

L
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Large on-resistance:
* Poor channel mobility of 17.8 cm2/V.s

* Quasi-vertical: current crowding at n-GaN layer
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First fully-vertical power transistors on Silicon

Demonstration of fully vertical GaN power transistors on cost-effective 6” Silicon
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R. A. Khadar, C. Liu, R. Soleimanzadeh, E. Matioli, IEEE Electron Device Letters, vol. 40, Issue: 3, Jan 2019
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Fully-Vertical power transistors

First demonstration of fully vertical GaN power transistors on cost-effective Silicon
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Major step toward high-performance GaN vertical power transistors on low-cost silicon substrates

R. A. Khadar, C. Liu, R. Soleimanzadeh, E. Matioli, IEEE Electron Device Letters, vol. 40, Issue: 3, Jan 2019
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=P

Advanced concept:
Fleld management using polarization engineering

Can we use a low band-gap material for higher voltage devices?

—
O

29



Motivation: electric field management “PFL

Schottky Barrier Diode (SBD)

—— Junction Barrier Schottky (JBS)

High E at Schottky interface Eat -1200V reen

High reverse leakage current
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Motivation: electric field management “PFL

Schottky Barrier Diode (SBD)

High E at Schottky interface
High reverse leakage current

Our approach:

Electric field
§ Mviem Polarization fields of InGaN for field management
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R. A. Khadar et al., ISPSD, pp. 147-150 (2021) Cathode

Can we use a low band-gap material for higher voltage devices?
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Polarization fields of InGaN for field management
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A. Floriduz, Z. Hao and E. Matioli, IEEE Electron Device Letters 2024 (online access)
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At -800 V:
Erox = 1.94 MV /em

At -800 V:

E = 0.9 MV/em

max, p-InGaN —

Piezoelectric field (+) in p-InGaN opposes external reverse electric field (-)



TCAD simulations: thin p-InGaN layer “P-L
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Large decrease in leakage current using thin p-InGaN

A. Floriduz, Z. Hao and E. Matioli, IEEE Electron Device Letters 2024 (online access)



TCAD simulations: p-InGaN vs. uid-InGaN “P-L
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Piezoelectric polarization of InGaN:
Dominant contribution to electrical performances



Design space exploration o =3=
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A thickness of 7 nm and [In] = 7.5% offer the best compromise



p-InGaN/GaN SBDs with High BV with low RON
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Low band-gap InGaN for larger voltage devices

A. Floriduz, Z. Hao and E. Matioli, IEEE Electron Device Letters 2024 (online access)
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High Baliga Figure-of-Merits (BFOM)

Benchmark of GaN Schottky diodes
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High Baliga Figure-of-Merit (BFOM) = 1.32 GW /cm?

A. Floriduz, Z. Hao and E. Matioli, IEEE Electron Device Letters 2024 (online access)
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Conclusions =Pr-

Vertical power devices on bulk GaN:
* Excellent performance near the GaN limits with text-book like features

Future challenges:
e Substrate too expensive and too small
* Localized doping: can we use ion implantion effectively in GaN?

* Improved Mg-doping: low activation of Mg dopants leads to poor transport in
the channel

Vertical GaN-on-Si power devices:
* Relatively thick GaN layers on Silicon
* Quasi-vertical PiN diodes and MOSFETs
*  First demonstration of fully-vertical GaN-on-Si MOSFET

Future challenges:
* Growth of thicker drift GaN layers
* Reduction of dislocation density

Low band-gap InGaN for larger voltage devices
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